From documentary evidence to algorithmic auditing: epistemic, methodological and normative challenges for public accounting
DOI:
https://doi.org/10.58493/ecca.2025.4.1.24Keywords:
Financial auditing; Artificial intelligence; Accounting epistemology; Continuous auditing; Algorithmic ethics; Public accounting.Abstract
The incorporation of artificial intelligence (AI) in financial auditing is rapidly changing public accounting practices, not only in operational terms but also in how accounting knowledge is produced, validated, and certified. This phenomenon has generated a transition from audit models based on sampling and professional judgment to automated schemes for massive data analysis and continuous auditing supported by machine learning algorithms (Kokina & Davenport, 2017; Power, 2022). This article presents a systematic literature review following the PRISMA guidelines to analyze the epistemological, methodological, and ethical-regulatory challenges associated with the use of AI in financial auditing. Scopus, Web of Science, ScienceDirect, EBSCO, Redalyc, and SciELO were consulted, with a time frame of 2015–2025. After the screening process, 47 studies were included for comparative qualitative analysis. The findings are organized around three axes: (1) Epistemological: the validation of accounting knowledge faces the challenge of opaque algorithmic systems (black-box systems), which strains the traditional notion of auditor objectivity (Burrell, 2016; Doshi-Velez & Kim, 2017). (2) Methodological: sampling-based auditing is being displaced by total analytics and continuous auditing, which demands new professional skills in data science, anomaly mining, and financial visualization (Alles, 2015; IAASB, 2023). (3) Ethical-regulatory: there is a lack of clear regulatory frameworks regarding algorithmic responsibility, automated bias, traceability, and transparency in AI-assisted financial decision-making. AI not only transforms auditing practice but also the epistemology of public accounting and the auditor's social role. Advanced professional training, specific international regulations, and hybrid human-algorithmic auditing frameworks are required.
References
Alles, M. G. (2015). Drivers of the use and facilitators and obstacles of the evolution of continuous auditing. Accounting Horizons, 29(2), 321–337. https://doi.org/10.2308/acch-51067
Álvarez, R., & López, M. (2021). Transformación digital y brechas tecnológicas en América Latina. Revista CEPAL, 134, 45–62.
Appelbaum, D., Kogan, A., & Vasarhelyi, M. A. (2017). Big data and analytics in the modern audit engagement: Research needs. Auditing: A Journal of Practice & Theory, 36(4), 1–27. https://doi.org/10.2308/ajpt-51684
Burrell, J. (2016). How the machine “thinks”: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 1–12. https://doi.org/10.1177/2053951715622512
Comisión Nacional Bancaria y de Valores (CNBV). (2023). Informe anual de supervisión financiera. https://www.gob.mx/cnbv
Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint. https://arxiv.org/abs/1702.08608
Ernst & Young. (2021). How EY is transforming audit through technology. https://www.ey.com
European Parliament. (2023). Artificial Intelligence Act: Proposal for a regulation laying down harmonised rules on artificial intelligence. https://www.europarl.europa.eu
Federación Internacional de Contadores (IFAC). (2022). Artificial intelligence and the future of the profession. https://www.ifac.org
Guzmán, A., & Paredes, L. (2022). Regulación de la auditoría digital y desafíos éticos en América Latina. Revista Contaduría y Administración, 67(3), 1–21. https://doi.org/10.22201/fca.24488410e.2022.3094
International Auditing and Assurance Standards Board (IAASB). (2023). Technology and the future of auditing. https://www.iaasb.org
Kokina, J., & Davenport, T. H. (2017). The emergence of artificial intelligence: How automation is changing auditing. Journal of Emerging Technologies in Accounting, 14(1), 115–122. https://doi.org/10.2308/jeta-51730
Lombardi, D., Bloch, R., & Vasarhelyi, M. A. (2022). The future of audit analytics: A regulatory and accountability perspective. Journal of Accounting Literature, 48, 100–118. https://doi.org/10.1016/j.acclit.2022.100559
Mattessich, R. (2014). Reality and accounting: Ontological explorations in the economic and social sciences. Routledge.
Moll, J., & Yigitbasioglu, O. (2019). The role of internet-related technologies in shaping the work of accountants: New directions for accounting research. The British Accounting Review, 51(6), 100833. https://doi.org/10.1016/j.bar.2019.04.002
Morin, E. (2007). Introducción al pensamiento complejo. Gedisa.
Organisation for Economic Co-operation and Development (OECD). (2022). Artificial intelligence, accountability and transparency. https://www.oecd.org
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Blackwell Publishing.
Power, M. (1995). Auditing, expertise and the sociology of technique. Critical Perspectives on Accounting, 6(4), 317–339. https://doi.org/10.1006/cpac.1995.1023
Power, M. (2022). Accounting, risk and the audit society. Oxford University Press.
Rozario, A. M., & Vasarhelyi, M. A. (2018). How audit education can evolve to meet the demands of the future audit environment. Accounting Horizons, 32(3), 205–220. https://doi.org/10.2308/acch-52173
Sutton, S. G., Holt, M., & Arnold, V. (2021). The reports of my death are greatly exaggerated—Artificial intelligence research in accounting. International Journal of Accounting Information Systems, 40, 100523. https://doi.org/10.1016/j.accinf.2021.100523
Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big data in accounting: An overview. Accounting Horizons, 29(2), 381–396. https://doi.org/10.2308/acch-51071
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2026 MARIA DE LOS ANGELES ZARATE LOYOLA, Juan Emilio Medellín Ramírez, Claudia Ivett Zamorano Cañizales

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y construir a partir del material
- La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia
Bajo los siguientes términos:
- Atribución — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia, e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.
- NoComercial — Usted no puede hacer uso del material con propósitos comerciales .
- CompartirIgual — Si remezcla, transforma o crea a partir del material, debe distribuir su contribución bajo la la misma licencia del original.
- No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.










